An improved Monte-Carlo model of the Varian EPID separating support arm and rear-housing backscatter

نویسندگان

  • Sridhar Yaddanapudi
  • Sreekrishna M Goddu
  • M E Monville
  • Z Kuncic
  • P B Greer
چکیده

Previous investigators of EPID dosimetric properties have ascribed the backscatter, that contaminates dosimetric EPID images, to its supporting arm. Accordingly, Monte-Carlo (MC) EPID models have approximated the backscatter signal from the layers under the detector and the robotic support arm using either uniform or non-uniform solid water slabs, or through convolutions with back-scatter kernels. The aim of this work is to improve the existent MC models by measuring and modelling the separate backscatter contributions of the robotic arm and the rear plastic housing of the EPID. The EPID plastic housing is non-uniform with a 11.9 cm wide indented section that runs across the cross-plane direction in the superior half of the EPID which is 1.75 cm closer to the EPID sensitive layer than the rest of the housing. The thickness of the plastic housing is 0.5 cm. Experiments were performed with and without the housing present by removing all components of the EPID from the housing. The robotic support arm was not present for these measurements. A MC model of the linear accelerator and the EPID was modified to include the rear-housing indentation and results compared to the measurement. The rear housing was found to contribute a maximum of 3% additional signal. The rear housing contribution to the image is non-uniform in the in-plane direction with 2% asymmetry across the central 20 cm of an image irradiating the entire detector. The MC model was able to reproduce this non-uniform contribution. The EPID rear housing contributes a nonuniform backscatter component to the EPID image, which has not been previously characterized. This has been incorporated into an improved MC model of the EPID.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TU-E-BRA-02: A Method to Remove Support Arm Backscatter from EPID Images.

PURPOSE To develop a method for removing the effect of support arm backscatter from Varian electronic portal imaging devices (EPIDs), improving the dosimetric abilities of the imager. METHODS A physical, kernel based model of the backscatter signal produced during an exposure was developed. The model parameters were determined through an optimization process, comparing measured images without...

متن کامل

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography

Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...

متن کامل

Evaluation putty metal as internal shield for patient protection of electron therapy by Monte Carlo study

Introduction: In this study, a specific combination (70% W 18.61% Ni and 11.39% C) of lead free and flexible putty metal is introduced and validated as internal shielding by Mont Carlo study Materials and Methods: To evaluate putty metal as an internal shielding by Mont Carlo study Varian 2100 C/D was validated within measurement and then by given energy spect...

متن کامل

A comparative Monte Carlo study on 6MV photon beam characteristics of Varian 21EX and Elekta SL-25 linacs

Background: Monte Carlo method (MC) has played an important role in design and optimization of medical linacs head and beam modeling. The purpose of this study was to compare photon beam features of two commercial linacs, Varian 21EX and Elekta SL-25 using MCNP4C MC code. Materials and Methods: The 6MV photon beams of Varian 21EX and Elekta Sl-25 linacs were simulated based on manufacturers pro...

متن کامل

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images

The aim in this study is to develop a generalized strategy for 3D dose verification of IMRT and VMAT planes using EPID transit images in combination with Monte Carlo (MC) simulations. An EPID-based dosimetric verification procedure was developed to convert EPID-measured transit images into 2D exit photon fluence by de-convoluting with the MC-simulated EPID response kernels. The present scatter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013